Search results for "Heat equation"
showing 10 items of 40 documents
Derivation of a Homogenized Two-Temperature Model from the Heat Equation
2014
This work studies the heat equation in a two-phase material with spherical inclusions. Under some appropriate scaling on the size, volume fraction and heat capacity of the inclusions, we derive a coupled system of partial differential equations governing the evolution of the temperature of each phase at a macroscopic level of description. The coupling terms describing the exchange of heat between the phases are obtained by using homogenization techniques originating from [D. Cioranescu, F. Murat: Coll\`ege de France Seminar vol. 2. (Paris 1979-1980) Res. Notes in Math. vol. 60, pp. 98-138. Pitman, Boston, London, 1982.]
Analytical approach extending the Granier method to radial sap flow patterns
2020
Abstract The Granier thermal dissipation (TD) method is probably the most applied method to compute the transpiration flux of trees, due to its simplicity and effective compromise between theory and data availability. Starting from the heat transfer equations at the basis of Granier’s method, the objective of this paper is to derive an analytical solution for the transpiration flux to extend the sap flow equations to the radial domain. We adopted a flexible approach to cope with the differences in radial sapflow density (SFD) profile shapes that are known to occur in relation to wood anatomy (diffuse porous vs. ring- or non-porous xylem). With this purpose, we investigated the robustness of…
Asymptotic behavior for the heat equation in nonhomogeneous media with critical density
2013
Abstract We study the long-time behavior of solutions to the heat equation in nonhomogeneous media with critical singular density | x | − 2 ∂ t u = Δ u , in R N × ( 0 , ∞ ) in dimensions N ≥ 3 . The asymptotic behavior proves to have some interesting and quite striking properties. We show that there are two completely different asymptotic profiles depending on whether the initial data u 0 vanishes at x = 0 or not. Moreover, in the former the results are true only for radially symmetric solutions, and we provide counterexamples to convergence to symmetric profiles in the general case.
Theoretical study of a Bénard Marangoni problem
2011
[EN] In this paper we prove the existence of strong solutions for the stationary Benard-Marangoni problem in a finite domain flat on the top, bifurcating from the basic heat conductive state. The Benard-Marangoni problem is a physical phenomenon of thermal convection in which the effects of buoyancy and surface tension are taken into account. This problem is modelled with a system of partial differential equations of the type Navier-Stokes and heat equation. The boundary conditions include crossed boundary conditions involving tangential derivatives of the temperature and normal derivatives of the velocity field. To define tangential derivatives at the boundary, intended in the trace sense,…
A strongly degenerate quasilinear elliptic equation
2005
Abstract We prove existence and uniqueness of entropy solutions for the quasilinear elliptic equation u - div a ( u , Du ) = v , where 0 ⩽ v ∈ L 1 ( R N ) ∩ L ∞ ( R N ) , a ( z , ξ ) = ∇ ξ f ( z , ξ ) , and f is a convex function of ξ with linear growth as ∥ ξ ∥ → ∞ , satisfying other additional assumptions. In particular, this class of equations includes the elliptic problems associated to a relativistic heat equation and a flux limited diffusion equation used in the theory of radiation hydrodynamics, respectively. In a second part of this work, using Crandall–Liggett's iteration scheme, this result will permit us to prove existence and uniqueness of entropy solutions for the corresponding…
Nonsmooth Penalty Techniques in Control of the Continuous Casting Process
1991
We introduce a mathematical model which is used to simulate the continuous casting process and to control the secondary cooling water sprays. The main object is to minimize the defects in the final products. The problem is formulated as an optimal control problem where the cost function is constructed according to certain metallurgical criteria and constraints. The temperature distribution of the strand is calculated by solving a nonlinear heat equation with free boundaries between solid and liquid phases.
Fronts propagating with signal dependent speed in limited diffusion and related Hamilton-Jacobi formulations
2021
We consider a class of limited diffusion equations and explore the formation of diffusion fronts as the result of a combination of diffusive and hyperbolic transport. We analyze a new class of Hamilton-Jacobi equations arising from the convective part of general Fokker-Planck equations ruled by a non-negative diffusion coefficient that depends on the unknown and on the gradient of the unknown. We explore the main features of the solution of the Hamilton-Jacobi equations that contain shocks and propose a suitable numerical scheme that approximates the solution in a consistent way with respect to the solution of the associated Fokker-Planck equation. We analyze three model problems covering d…
Intensive wave power and steel quenching 3-D model for cylindrical sample. Time direct and reverse formulations and solutions
2017
In this paper we develop mathematical models for three dimensional hyperbolic heat equations (wave equation or telegraph equation) with inner source power and construct their analytical solutions for the determination of the initial heat flux for cylindrical sample. As additional conditions the temperature and heat flux at the end time are given. In some cases we give expression of wave energy. In some cases we give expression of wave energy. Some solutions of time inverse problems are obtained in the form of first kind Fredholm integral equation, but others has been obtained in closed analytical form as series. We viewed both direct and inverse problems at the time. For the time inverse pr…
Diffusion front capturing schemes for a class of Fokker–Planck equations: Application to the relativistic heat equation
2010
In this research work we introduce and analyze an explicit conservative finite difference scheme to approximate the solution of initial-boundary value problems for a class of limited diffusion Fokker-Planck equations under homogeneous Neumann boundary conditions. We show stability and positivity preserving property under a Courant-Friedrichs-Lewy parabolic time step restriction. We focus on the relativistic heat equation as a model problem of the mentioned limited diffusion Fokker-Planck equations. We analyze its dynamics and observe the presence of a singular flux and an implicit combination of nonlinear effects that include anisotropic diffusion and hyperbolic transport. We present numeri…
Some regularity results on the ‘relativistic’ heat equation
2008
AbstractWe prove some partial regularity results for the entropy solution u of the so-called relativistic heat equation. In particular, under some assumptions on the initial condition u0, we prove that ut(t) is a Radon measure in RN. Moreover, if u0 is log-concave inside its support Ω, Ω being a convex set, then we show the solution u(t) is also log-concave in its support Ω(t). This implies its smoothness in Ω(t). In that case we can give a simpler characterization of the notion of entropy solution.